Maths PCSI Exercices

Rectification et courbure

EXERCICE 1 Donner la longueur du graphe de la sinusoïde : $t \in [0, 2\pi] \mapsto \sin t$. Donner également la courbure en $(\pi/2, 1)$.

EXERCICE 2 Déterminer la développée d'une ellipse, c'est-à-dire le lieu des centres de courbure (calcul plus dessin).

Exercice 3

- 1. Soit F un déplacement du plan et (I, γ) une courbe de classe \mathcal{C}^2 . Montrer que la courbure de $(I, F \circ \gamma)$ est la même que (I, γ) .
- 2. Réciproquement, si (I, g_1) et (I, g_2) ont même coubure, montrer qu'il existe un déplacement F tel que $g_2 = F \circ g_1$. On pourra fixer $t_0 \in I$, et montrer l'existence d'un déplacement F tel que $F(g_1(t_0)) = g_2(t_0)$ et vect $F(g_1'(t_0)) = g_2'(t_0)$.
- 3. Que se passe-t-il si F est un anti-déplacement ?

EXERCICE 4 Courbes à courbure donnée On se donne une application $\lambda: I \to \mathbb{R}$.

- 1. Montrer qu'il existe une courbe (I,g) telle que la courbure en g(s) vaut $\lambda(s)$.
- 2. Unicité? (regarder la preuve de l'existence, ou l'exercice précédent)

EXERCICE 5 Trois animaux stupides (A, B et C) se poursuivent mutuellement (à vitesse non constante a priori, mais dépendant de façon C^{15} du temps). Montrer que le produit des rayons de courbure des trois trajectoires à un instant donné vaut $8R^3$, où R est le rayon du cercle circonscrit au triangle (A, B, C).