Intégration - 1ère couche

EXERCICE 1 Soit $f \in \mathcal{C}_{PM}([a,b])$. Montrer :

$$\left(\int_a^b f\right)^2 \le (b-a)^2 \int_a^b f^2.$$

Exercice 2 Pour les fonctions continues, quels sont les cas d'égalité dans l'inégalité de la moyenne? Et pour les fonctions seulement continues par morceaux?

EXERCICE 3 Soit $f \in \mathcal{C}_{PM}(\mathbb{R})$ T-périodique. Montrer que $\int_a^{a+T} f(t)dt$ ne dépend pas de $a \in \mathbb{R}$.

EXERCICE 4 En encadrant les sommes par des intégrales, donner un équivalent simple lorsque $n \to \infty$ de $u_n = \sum_{k=1}^n \frac{1}{k}$ et $v_n = \sum_{k=1}^n k \ln k$.

Exercice 5 (*)

Déterminer toutes les fonctions continues sur $\mathbb R$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \qquad (y-x)f(\frac{x+y}{2}) = \int_x^y f.$$

Exercice 6 (*)

Pour $n, p \in \mathbb{N}^*$, on pose :

$$u_{n,p} = \left(\frac{1}{n}\sum_{k=0}^{n-1} \left(1 + \frac{k}{n}\right)^{1/p}\right)^p.$$

- 1. Déterminer $\lim_{p\to\infty} (\lim_{n\to\infty} u_{n,p})$.
- 2. Déterminer $\lim_{n\to\infty} (\lim_{p\to\infty} u_{n,p})$.

Remarque : ne surtout pas généraliser le résultat précédent!

EXERCICE 7 Soit $f \in \mathcal{C}_{PM}(I)$ et $a \in I$. Que dire de l'application

$$F \parallel I \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(t)dt$$

EXERCICE 8 Déterminer l'ensemble des $x \in \mathbb{R}$ en lesquels $\int_{x^2/6}^{3x^3} \sqrt{1-t^8} dt$ est définie. On note f(x) ce réel pour de tels x. Etudier la continuité et la dérivabilité de f.

Exercice 9 (*) "Lemme de Riemann-Lebesgue"

Soit f continue par morceaux sur
$$[a,b]$$
. Montrer : $\int_a^b f(x) \cos nx dx \xrightarrow[n \to \infty]{} 0$.

On pourra commencer par le cas où f est constante, puis f en escalier, puis terminer avec un lemme d'approximation vu en cours. N.B. : dans le cas où f est C^1 , une simple IPP suffit : le vérifier!

Exercice 10 (**)

Déterminer la limite, lorsque u tend vers 0^+ , de $f(u) = \int_u^{2u} \frac{\cos x}{x} dx$.

On pourra commencer par fixer u et majorer (soigneusement) $\begin{vmatrix} x \\ \cos x - 1 \end{vmatrix}$ lorsque $u \le x \le 2u$, puis obtenir une majoration de $\left| f(u) - \int_{u}^{2u} \frac{dx}{x} \right|$ en fonction de u.

EXERCICE 11 (**)

- 1. Montrer que pour tout $x \in \mathbb{R}$, il existe un unique $y \in \mathbb{R}$ tel que $\int_x^y e^{t^2} = 1$. Dans toute la suite, on note $y = \varphi(x)$ le réel ainsi associé à x.
- 2. Montrer que φ est croissante; déterminer ses limites en $+\infty$ et $-\infty$.
- 3. (difficile) Montrer que φ est continue puis dérivable.
- 4. Montrer que la graphe de φ admet un axe de symétrie et une asymptote en $+\infty$ et $-\infty$.
- 5. Esquisser le graphe de φ .

EXERCICE 12 Calculer les intégrales suivantes :

1. Quelques fractions rationnelles...

(a)
$$\int_{1}^{2} \frac{dx}{x(x^2+5)}$$
;

(b)
$$\int_{-1}^{1} \frac{dx}{x^2 - 4}$$
;

(c)
$$\int_0^1 \frac{2x+3}{2x+1} dx$$
;

(d)
$$\int_0^1 \frac{x^2 - 5x + 5}{x^2 + 4} dx;$$

(e)
$$\int_0^1 \frac{dx}{x^3 + 1}$$
;

(f)
$$\int_0^t \frac{x}{(x+1)^2} dx$$
;

2.
$$\int_0^1 x^2 (2x+1)^{10} dx$$
;

3.
$$\int_{-1}^{1} x^{19} (x^2 + 1)^{18} dx;$$

4.
$$\int_a^b \frac{\sin t}{1 + \cot t} dt$$
 où a et b sont deux réels;

5.
$$\int_0^1 x(\arctan x)^2 dx$$
 (intégrer deux fois par parties);

6.
$$\int_{\pi/2}^{\alpha} \frac{\cos^2(2x)}{\sin x} \text{ où } 0 < \alpha < \pi \text{ } (t = \cos x);$$

7.
$$\int_0^1 \frac{1 + \operatorname{ch} x}{1 + \operatorname{sh}^2 x} dx \ (t = e^x \text{ après simplification});$$

8.
$$\int_0^{\pi/2} \cos^3 t dt$$
;

9.
$$\int_0^{\pi/2} \sin^5 t dt$$
;

10.
$$\int_{-1}^{1} \sqrt{1 + |x(1-x)|} dx;$$

11.
$$\int_0^{\pi/2} \frac{\cos x}{1 + \sin^3 x} dx \text{ (poser } y = \sin x).$$