Dérivation des fonctions numériques d'une variable réelle

1 Aspects locaux

Exercice 1

On va obtenir la continuité et la dérivabilité en même temps en faisant un DL de f en 0 à l'ordre 1 :

$$\sqrt{1+x} - \sqrt{1-x} = (1+x)^{1/2} - (1-x)^{1/2} = (1+x/2) - (1-x/2) + o(x) = x + o(x),$$

de sorte que pour $x \neq 0$, on a f(x) = 1 + o(1): on obtient en fait un DL à l'ordre 0 qui nous assure la continuité de f puisqu'on a posé f(0) = 1. Cela dit, la division par x nous a fait perdre un ordre (on aurait pû s'en douter...). On recommence donc à l'ordre 2 au numérateur :

$$\sqrt{1+x} - \sqrt{1-x} = (1+x/2-x^2/8) - (1-x/2-x^2/8) + o(x^2) = x + o(x^2),$$

puis f(x) = 1 + o(x), donc f est dérivable en 0, de dérivée nulle.

EXERCICE 2

f est définie et continue sur \mathbb{R}^+ , et dérivable sur \mathbb{R}^+_* . Pour la dérivée, on trouvera comme Maple (et peut-être même du premier coup, comme lui) :

$$\forall x > 0, \qquad f'(x) = \frac{1}{8\sqrt{x}\sqrt{2+\sqrt{x}}\sqrt{1+\sqrt{2+\sqrt{x}}}}$$

Exercice 3

• Supposons f dérivable à droite et à gauche en a: on écrit lorsque h tend vers 0^+ :

$$f(a+h) - f(a-h) = (f(a) + hf'_d(a) + o(h)) - (f(a) - hf'_g(a) + o(h))$$

= $h(f'_d(a) + f'_g(a)) + o(h)$,

puis:

$$\frac{f(a+h) - f(a-h)}{2h} = \frac{f_g'(a) + f_d'(a)}{2} + o(1),$$

si bien que f admet en a une dérivée symétrique qui est la moyenne arithmétique des dérivées à droite et à gauche.

• En choisissant f paire, on aura nécessairement en 0 une dérivée symétrique nulle. Il suffit donc de construire f paire mais non dérivable à droite et à gauche : par exemple :

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ x \sin \frac{1}{x^3} & \text{sinon} \end{cases}$$

Exercice 4

La dérivabilité du produit de n fonctions dérivables s'établit par récurrence immédiate.

Pour avoir la forme de la dérivée d'un tel produit on regarde ce qui se passe pour n=3, puis n=4. On devine alors la formule suivante, qu'on pourra montrer par récurrence :

$$(f_1 \dots f_n)' = \sum_{i=1}^n \left(f_i' \prod_{k \neq i} f_k \right).$$

Ne pas se laisser impressionner par les deux symboles : l'écrire d'abord "avec des petits points".

Clairement (?), $f(x) = o(x^{1515})$, ce qui est bien un DL à l'ordre 1515. A fortiori, cela fournit le DL à l'ordre 1 f(x) = o(x), de sorte que f est dérivable en 0, de dérivée f'(0) = 0.

En $x \neq 0$, f est dérivable, de dérivée

$$f'(x) = 1516x^{1515} \sin \frac{1}{x^{1789}} - \frac{1789}{x^{274}} \cos \frac{1}{x^{1789}}$$

Si on considère $f'(x_n)$, avec $x_n = \left(\frac{1}{2n\pi}\right)^{1/1789}$, on voit que f' n'est pas continue en 0. f est donc dérivable sur \mathbb{R} mais pas de classe \mathcal{C}^1 , donc a fortiori n'est pas dérivable 1515 fois.

Exercice 6

 $\bullet \text{ La fonction } \varphi: t \mapsto \begin{cases} 0 & \text{si } x \leq 0 \\ \mathrm{e}^{-1/x} & \text{si } x > 0 \end{cases} \text{ est de classe } \mathcal{C}^{\infty} \text{ (cours), à valeurs strictement positive sur}$ $]0,+\infty[$, et nulle en déhors. La fonction $\psi:t\mapsto \varphi(1-t)$ est quant à elle strictement positive sur $]-\infty,1[.$

Il suffit donc de prendre $f = \varphi \psi$!

• Imaginons qu'une telle fonction existe : f(-1/n) = 0 pour tout $n \in \mathbb{N}$, donc en faisant tendre n vers $+\infty$, et grâce à la continuité en 0, on obtient f(0)=0, ce qui est contraire aux hypothèses.

Exercice 7

• $x \mapsto \sin^5 x$: difficile d'avoir une idée avec les premiers termes... Cela dit, on peut linéariser, en écrivant:

$$\sin^5 x = \left(\frac{1}{2i} \left(e^{ix} - e^{-ix}\right)\right)^5 = \frac{1}{16} \frac{1}{2i} \left(e^{5ix} - 5e^{3ix} + 10e^{ix} - 10e^{-ix} + 5e^{-3ix} - e^{-5ix}\right)$$
$$= \frac{1}{16} (\sin 5x - 5\sin 3x + 10\sin x),$$

puis:

$$(\sin^5 x)^{(2p)} = \frac{1}{16}((-25)^p \sin 5x - 5(-9)^p \sin 3x + 10(-1)^p \sin x)$$

et:

$$(\sin^5 x)^{(2p+1)} = \frac{1}{16} (5(-25)^p \cos 5x - 15(-9)^p \cos 3x + 10(-1)^p \cos x).$$

• $x \mapsto e^x \cos x$: cette fois, on peut utiliser directement Leibniz:

$$(e^x \cos x)^{(n)} = e^x \sum_{k=0}^n C_n^k (\cos)^{(k)} x,$$

avec $\cos^{(2p)} x = (-1)^p \cos x$ et $\cos^{(2p+1)} x = (-1)^{p+1} \sin x$.

Cela dit, Maple semble donner un résultat plus simple. Prenons un autre point de vue, en voyant $e^x \cos x$ comme la partie entière de $e^{(1+i)x}$, de sorte que $(e^x \cos x)^{(n)}$ est la partie entière de $(1+i)^n e^{(1+i)x} = e^{(1+i)x}$ $\sqrt{2}^n e^{(n\pi/4+x)i}e^x$, c'est-à-dire $\sqrt{2}^n \cos(n\pi/4+x)e^x$, soit encore :

$$\begin{array}{rcl} (\mathrm{e}^x \cos x)^{(4p)} & = & (-4)^p \cos x \mathrm{e}^x, \\ (\mathrm{e}^x \cos x)^{(4p+1)} & = & (-4)^p (\cos x - \sin x) \mathrm{e}^x, \\ (\mathrm{e}^x \cos x)^{(4p+2)} & = & -2.4^p \sin x \mathrm{e}^x, \\ (\mathrm{e}^x \cos x)^{(4p+3)} & = & -2.4^p (\sin x + \cos x) \mathrm{e}^x. \end{array}$$

Exercice 8

Pour $n \in \mathbb{N}^*$, soit $\mathcal{P}(n)$ la proposition " $\frac{d^n}{dx^n}(x^{n-1}\ln x) = \frac{(n-1)!}{x}$ ".

• On vérifie sans mal $\mathcal{P}(1)$, $\mathcal{P}(2)$, voire $\mathcal{P}(3)$.

• Supposons $\mathcal{P}(n)$ vérifiée pour un certain $n \in \mathbb{N}^*$, et écrivons grâce à Leibniz et à $\mathcal{P}(n)$:

$$\begin{split} \frac{d^{n+1}}{dx^{n+1}}(x^n \ln x) &= \frac{d^{n+1}}{dx^{n+1}} \left((x^{n-1} \ln x) . x \right) \\ &= x . \frac{d^{n+1}}{dx^{n+1}} (x^{n-1} \ln x) + (n+1) \frac{d^n}{dx^n} (x^{n-1} \ln x) \\ &= x \left(\frac{(n-1)!}{x} \right)' + (n+1) \frac{(n-1)!}{x} \\ &= \frac{(n-1)!}{x} \left(-1 + (n+1) \right) = \frac{n!}{x} . \end{split}$$

Ceci établit $\mathcal{P}(n+1)$.

Le principe de récurrence permet de conclure : $\mathcal{P}(n)$ est vérifiée pour tout $n \in \mathbb{N}^*$.

2 Aspects globaux

Exercice 9

1. On prouve la relation proposée par récurrence sur $n \in \mathbb{N}$. On commence par la montrer au rang 1 pour tout x; on peut ensuite fixer x si ça nous chante.

Pour n=0, c'est évident, et pour n=1 (cas à faire, vu la suite...), il suffit de dériver l'équation fonctionnelle puis de diviser par a. Le passage du rang n au rang n+1 pour x consiste à utiliser la relation au rang n avec x, et au rang 1, non pas avec x mais avec $a^nx+\frac{a^n-1}{a-1}b$.

Détails pour le lecteur!

2. Si a < 1, la relation précédente et la continuité de f' nous permettent d'écrire (on fixe x, on fait tendre n vers $+\infty$, puis on libère x):

$$\forall x \in \mathbb{R}, \qquad f'(x) = f'\Big(\frac{b}{1-a}\Big),$$

donc f' est constante, puis f est de la forme $x \mapsto \alpha x + \beta$ (pourquoi au fait?).

Cela dit, on a seulement trouvé une forme NECESSAIRE de f. A priori, on ne sait pas si une fonction affine $x \mapsto \alpha x + \beta$ est bien solution à notre problème.

Il ne reste plus qu'à voir si une telle fonction vérifie la relation fonctionnelle, c'est-à-dire :

$$\forall x \in \mathbb{R}, \qquad \alpha(ax+b) + \beta = \alpha(\alpha x + \beta) + b,$$

ce qui est équivalent à :

$$\alpha b + \beta = a\beta + b$$
.

Ainsi, les fonctions f de classe \mathcal{C}^1 vérifiant l'équation fonctionnelles de l'énoncé sont les fonctions affines $x \mapsto \alpha x + \beta$, où $\alpha, \beta \in \mathbb{R}$ vérifient $\alpha b + \beta = \alpha \beta + b$ (il ne s'agit donc pas de toutes les fonctions affines...).

3. Lorsque a > 1, on peut écrire (pourquoi?) :

$$\forall y \in \mathbb{R}, \qquad f'(y) = f'\Big(\frac{y}{a^n} + \frac{1 - \frac{1}{a^n}}{1 - a}b\Big),$$

et on obtient le même résultat qu'en 2.

Exercice 10

• Appliquer Rolle à la fonction auxiliaire

$$\varphi: x \in [a,b] \longmapsto f(x)(g(a) - g(b)) - g(x)(f(a) - f(b)).$$

• Notons déjà que g ne s'annulle pas au voisinage de a, puisque cela impliquerait (Rolle) que g' s'annulle également dans ce voisinage.

Maintenant, on peut écrire pour h proche de 0:

$$\frac{f(a+h)}{g(a+h)} = \frac{f'(c_h)}{g'(c_h)},$$

où c_h est compris entre a et a+h, si bien que $c_h \xrightarrow[h\to 0]{} a$, ce qui nous fournit le résultat recherché en composant les limites.

• BIEN ENTENDU, on ne parlera pas de limite dont l'existence n'est pas assurée : pour utiliser la rêgle de l'Hôpital, on est amené à considérer $\frac{1-\cos x}{3x^2}$, puis $\frac{\sin x}{6x}$: ce dernier terme tend vers $\frac{1}{6}$ lorsque x tend vers 0 (équivalent du sinus, ou rêgle de l'Hôpital à nouveau!). Il en va donc de même pour $\frac{1-\cos x}{3x^2}$ puis pour $\frac{x-\sin x}{x^3}$. On retrouve ainsi :

$$\sin x = x - \frac{x^3}{6} + o(x^3).$$

On peut ainsi trouver tous les DLs classiques : essayez!

On trouvera de même :

$$\frac{\ln(1+x) - x}{x^2} \underset{x \to 0}{\longrightarrow} -\frac{1}{2}.$$

Exercice 11

1. Commençons par le cas où $\alpha = 0$: on a donc f'(a) < 0 et f'(b) > 0 (ATENTION, cela ne signifie pas que f est décroissante au voisinage de a).

f est continue sur le segment [a,b], donc admet un minimum global m pris en $d \in [a,b]$. On va montrer que $d \in]a,b[$, ce qui permettra d'affirmer que f'(d)=0 (extremum local pris à l'intérieur de l'intervalle), et on pourra conclure.

On veut exclure les cas d=a et d=b. Il suffit par symétrie de traiter un cas, par exemple le second, en commençant par un dessin...

 $\frac{f(b)-f(b-h)}{h} \underset{h \to 0^+}{\longrightarrow} f'(b) > 0, \text{ donc il existe } \alpha > 0 \text{ tel que pour tout } h \in]0, \alpha[, \frac{f(b)-f(b-h)}{h} \geq \frac{f'(b)}{2};$ on a alors $f(b)-f(b-\alpha) > 0$, puis $f(b)>f(b-\alpha)$, et le minimum global n'est donc pas pris en b. N.B.: on peut également raisonner par l'absurde en supposant le minimum global pris en a. Pour $\alpha > 0$, on a $\frac{f(a+\alpha)-f(a)}{\alpha} \geq 0$, donc en passant à la limite: $f'(a) \geq 0$: absurde.

Pour le cas général, on considère la fonction auxiliaire $g: x \mapsto f(x) - \alpha x$, et on est ramené au cas précédent ("principe de la casserole").

2. Les fonctions g_1 et g_2 sont clairement continues (en a pour g_1 (resp. b pour g_2), c'est par définition de la dérivée), et prennent pour valeur commune :

$$g_1(b) = \frac{f(b) - f(a)}{b - a} = g_2(a).$$

 $E = g_1([a,b]) \cup g_2([a,b])$ est donc la réunion de deux intervalles (TVI) d'intersection non vide : c'est donc un intervalle. Comme cet intervalle contient f'(a) et f'(b), il contient également α , de sorte que $\alpha = g_1(x)$ ou $\alpha = g_2(x)$ pour un certain $x \in [a,b]$. Traitons le premier cas : si x = a, alors $\alpha = f'(a)$ (gagné), et si x > a, le théorème des accroissements finis appliqué à f nous fournit $g \in [a,x]$ tel que :

$$f'(y) = \frac{f(x) - f(a)}{x - a} = g_1(x) = \alpha.$$

- 1. Pour chaque $k \in [0, n-1]$, appliquer le TAF entre $\frac{k}{n}$ et $\frac{k+1}{n}$, puis faire la somme...
- 2. Cette fois, plutôt qu'un découpage uniforme selon les x, on va faire un découpage uniforme selon les y: d'après le TVI, il existe $x_1 \in]0,1[$ tel que $f(x_1)=\frac{1}{n}$. Ensuite, il existe $x_2 \in]x_1,1[$, tel que $f(x_2)=\frac{2}{n}$, et ainsi de suite, ce qui nous fournit x_0,\ldots,x_n tels que :

$$0 = x_0 < x_1 < \dots < x_{n-1} < x_n = 1,$$

avec $f(x_k) = \frac{k}{n}$ pour tout $k \in [0, n]$.

Pour chaque $k \in [0, n-1]$, le TAF nous fournit $y_k \in]x_k, x_{k+1}[$ tel que $f'(y_k) = \frac{1}{n(x_{k+1} - x_k)}$. Il ne reste plus qu'à faire la somme des $\frac{1}{f'(y_k)}$.

Exercice 13

Si f est uniformément nulle sur \mathbb{R}^+ , ce n'est pas trop compliqué. On se place donc dans le cas où f n'est pas nulle : il existe alors a>0 tel que $f(a)\neq 0$. On va traiter le cas où f(a)>0. Pour cela, on va trouver une valeur prise par f sur]0,a[et sur $]a,+\infty[$, ce qui permettra d'appliquer le théorème de Rolle.

Le TVI nous assure qu'il existe $b \in]0, a[$ tel que $f(b) = \frac{f(a)}{2}$. Par ailleurs, il existe M > a tel que pour tout $x \ge A, -\frac{f(a)}{4} \le f(x) \le \frac{f(a)}{4}$. Le TVI appliqué à f entre a et A nous assure qu'il existe $c \in]a, A[$ tel que $f(c) = \frac{f(a)}{2}$. Il reste à appliquer Rolle entre b et c.

Exercice 14

Notons dans l'ordre croissant x_1, \ldots, x_n les racines de P, et considérons l'application $\mathcal{C}^{\infty} \varphi : t \mapsto P(t)e^{\lambda t}$. Si $k \in [1, n-1]$, cette application s'annulle en x_k et x_{k+1} , donc sa dérivée (donc $P' + \lambda P$: pourquoi?) s'annulle en $y_k \in]x_k, x_{k+1}[$, ce qui nous fournit n-1 racines de $P' + \lambda P$.

On trouve la dernière racine en appliquant le théorème de Rolle généralisé (exercice précédent) sur $]-\infty,x_1]$ si $\lambda>0$, ou sur $[x_n,+\infty[$ si $\lambda<0$ (n'oublions pas que $\lambda\neq0...$).

Exercice 15

On fait un dessin et on est convaioncu du résultat. Géométriquement, on voit que la grandeur $\varphi(x) = \frac{f(x)}{c-x}$ va changer de variations aux points de tangence recherchés. Puisque $\varphi(a) = \varphi(b)$, le théorèmede Rolle nous fournit $d \in]a,b[$ tel que $\varphi'(d)=0$, soit f'(d)(c-d)=-f(d), ce qui est exactement la relation algébrique garantissant la condition géométrique recherchée.

Exercice 16

La rédaction va être un peu elliptique...

- Si f est une solution localement bornée, alors elle est localement lipschitzienne, puis continue, puis dérivable de dérivée f' = f (fixer $x \in \mathbb{R}$, et faire tendre y vers x), donc f est NECESSAIREMENT de la forme $x \mapsto Ke^x$ (toujours sous l'hypothèse selon laquelle elle est bornée localement).
- RECIPROQUEMENT, si f est de la forme $x \mapsto Ke^x$, alors elle bien solution au problème : on fixe x et y, par exemple avec x < y. Le TAF nous assure que $\frac{f(x) f(y)}{x y}$ est de la forme f'(c) (donc f(c)) avec c entre x et y, mais par monotonie de f, on a bien :

$$\operatorname{Min}(f(x), f(y)) \le f(c) \le \operatorname{Max}(f(x), f(y)).$$

• Il reste à montrer qu'une solution au problème est NECESSAIREMENT bornée localement. Si ce n'était pas le cas au voisinage de x, il existerait un suite (x_n) telle que $x_n \underset{n \to \infty}{\longrightarrow} x$ avec $|f(x_n)| \underset{n \to \infty}{\longrightarrow} +\infty$.

Il existe une infinité de termes $f(x_n)$ de même signe, si bien que quitte à extraire, on peut supposer : $f(x_n) \underset{n \to \infty}{\longrightarrow} +\infty$ ou $f(x_n) \underset{n \to \infty}{\longrightarrow} -\infty$. On va traiter le premier cas, le second étant symétrique (promis...). Il existe une infinité de termes $x_n - x$ de même signe. Quitte à extraire à nouveau, on peut supposer qu'ils sont tous de même signe.

- S'ils sont tous > 0, on peut écrire pour n assez grand :

$$f(x_n) \le f(x) + (x_n - x)f(x_n) \le f(x) + \frac{1}{2}f(x_n),$$

donc $f(x_n) \leq 2f(x)$, ce qui pose problème lorsque $n \to +\infty$.

- S'ils sont tous < 0, on peut écrire pour n assez grand :

$$f(x) \ge f(x_n) + (x - x_n) \min(f(x), f(x_n)) = f(x_n) + (x - x_n) f(x),$$

ce qui pose à nouveau problème lorsque $n \to +\infty$.

(ici, les deux cas n'étaient pas exactement symétrique...)

Ainsi, LES solutions au problème sont les fonctions $x \mapsto Ke^x$, $K \in \mathbb{R}$.

3 Taylorismes

Exercice 17

• g(b) = 0. Pour avoir g(a) = g(b), il est donc suffisant (et nécessaire) de prendre

$$M = \frac{(n+1)!}{(b-a)^{n+1}} \left(f(b) - \left(f(a) + \sum_{k=1}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) \right) \right).$$

• La dérivée de g vaut, après "collision de termes" :

$$g'(x) = -\frac{(b-x)^n}{n!}f^{(n+1)}(x) + M\frac{(b-x)^n}{n!}.$$

On peut appliquer à g le théorème de Rolle (pourquoi?) ce qui nous fournit $c \in]a,b[$ tel que g'(c)=0, c'est-à-dire $M=f^{(n+1)}(c)$, et alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c).$$

On retrouve le théorème qui n'existe pas, mais chut...

Exercice 18

L'inégalité de Taylor-Lagrange assure :

$$\forall x \in \mathbb{R}, \qquad \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le M \frac{x^{n+1}}{(n+1)!},$$

où M est un majorant de $\exp^{(n+1)}$ (c'est-à-dire \exp) sur [0,x] si $x \ge 0$ et [-x,0] sinon. Dans le premier cas, un majorant est $e^x = e^{|x|}$. Dans le second, un majorant est $1 \le e^{|x|}$. Dans les deux cas, $M = e^{|x|}$ convient. Fixons $x \in \mathbb{R}$, et posons $u_n = e^{|x|} \frac{x^{n+1}}{(n+1)!}$: cette suite tend vers 0 (croissance comparée des factorielles

Fixons $x \in \mathbb{R}$, et posons $u_n = e^{|x|} \frac{x^{n+1}}{(n+1)!}$: cette suite tend vers 0 (croissance comparée des factorielles et exponentielles, ou bien $\frac{u_{n+1}}{u_n} \underset{n \to \infty}{\longrightarrow} 0$, ce qui est d'ailleurs l'outil utilisé pour comparer les suites factorielles et exponentielles...), d'où le résultat.

Le théorème de Taylor-Young nous fournit un DL à l'ordre 3 de la fonction sinus en $\frac{\pi}{3}$, donc de h en 0 :

$$\sin(\pi/3 + h) = \sin\frac{\pi}{3} + h\cos\frac{\pi}{3} - \frac{h^2}{2}\sin\frac{\pi}{3} - \frac{h^3}{3!}\cos\frac{\pi}{3} + o(h^3)$$
$$= \frac{\sqrt{3}}{2} + \frac{1}{2}h - \frac{\sqrt{3}}{4}h^2 - \frac{1}{12}h^3 + o(h^3).$$

On retrouve le résultat de Maple.

Exercice 20

• Supposons f de classe \mathcal{C}^3 au voisinage de t_0 , avec $f''(t_0)=0$ et $f'''(t_0)\neq 0$: le théorème de Taylor-Young nous assure :

$$f(t_0+h)-\left(f(t_0)+hf'(t_0)\right)=\frac{f'''(t_0)}{6}h^3+o(h^3)\sim\frac{f'''(t_0)}{6}h^3,$$

de sorte que pour |h| assez petit, la différence entre $f(t_0 + h)$ et $f(t_0) + hf'(t_0)$ est < 0 lorsque h < 0 et > 0 lorsque h > 0 dans le cas où $f'''(t_0) > 0$. Si $f'''(t_0) > 0$, c'est le contraire, mais dans les deux cas, le graphe de f traverse la tangente.

• Réciproquement, si $f'''(t_0) = 0$, on ne peut rien affirmer : le graphe de $t \mapsto t^5$ admet en (0,0) un point d'inflexion alors que celui de $t \mapsto t^4$ n'en admet pas. Dans les deux cas, les dérivées seconde et troisième en 0 sont nulles...

Exercice 21

• Soit f de classe C^n au voisinage de 0: f admet donc (Taylor-Young) un DL à l'ordre n en 0; mais f' est de classe C^{n-1} , donc admet un DL à l'ordre n-1 en 0. De plus, si on note $a_k = f^{(k)}(0)$, on a:

$$f(t) = f(0) + a_1 t + a_2 \frac{t^2}{2} + \dots + a_n \frac{t^n}{n!} + o(t^n),$$

et:

$$f'(t) = a_1 + a_2t + a_3\frac{t^2}{2} + \dots + a_n\frac{t^{n-1}}{(n-1)!} + o(t^{n-1}),$$

de sorte qu'on peut effectivement obtenir le DL de f en intégrant celui de f' entre 0 et t, ou bien celui de f' en dérivant celui de f.

ATTENTION: on ne vient pas de montrer que si f admet un DL à l'ordre n, alors f' admet un DL à l'ordre n-1 (c'est faux : contre-exemple?) ni que si f' admet un DL à l'ordre p, alors f admet un DL à l'ordre p+1 (c'est néanmoins vrai : cf chapitre suivant...).

• $f: t \mapsto \ln(1+t)$ est de classe C^n sur $]-1, +\infty[$, et :

$$f'(t) = \frac{1}{0 + t} = 1 - t + t^2 + \dots + (-1)^{n-1} t^{n-1} + o(t^{n-1}),$$

donc:

$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + (-1)^n \frac{t^n}{n} + o(t^n).$$

• De même, $g = \arctan$ est de classe \mathcal{C}^{10} sur \mathbb{R} , avec :

$$g'(t) = \frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + t^8 + o(t^9),$$

donc:

$$\arctan t = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + o(t^{10}).$$

• Enfin, $h = \arcsin$ est de classe C^{10} sur \mathbb{R} , avec :

$$h'(t) = \frac{1}{\sqrt{1-t^2}} = (1-t^2)^{-1/2} = 1 + \frac{t^2}{2} + o(t^3),$$

donc:

$$\arcsin t = t + \frac{t^3}{6} + o(t^4).$$

Exercice 22

- Déjà fait en cours... il y a longtemps. Le refaire tout de même!
- $a_0 = \frac{\tan 0}{0!} = 0$, et $a_1 = \frac{1 + \tan^2 0}{1!} = 1$. Maintenant, si $n \ge 1$, on écrit $\tan' = 1 + \tan^2$, si bien qu'en dérivant n fois grâce à Leibniz puis en évaluant en 0, on obtient :

$$(n+1)!a_{n+1} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} k!a_k(n-k)!a_{n-k},$$

d'où le résultat après division par (n+1)! (on a noté que $a_0=0$).

• Par imparité de tan, on sait déjà : $a_0 = a_2 = a_4 = a_6 = 0$; et on trouve successivement :

$$a_3 = \frac{1}{3}(1+0) = \frac{1}{3}, \qquad a_5 = \frac{1}{5}(\frac{1}{3}+0+\frac{1}{3}+0) = \frac{2}{15},$$

puis

$$a_7 = \frac{1}{7} \left(\frac{2}{15} + 0 + \frac{1}{9} + 0 + \frac{2}{15} + 0 \right) = \frac{17}{315}$$

et enfin:

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + o(x^7).$$

On lira avec beaucoup d'intérèt la feuille de travail Maple...

Exercice 23

Fixons $x \in \mathbb{R}$. Pour h > 0, on écrit les deux inégalités (IAF) :

$$\left| f(x+h) - \left(f(x) + hf'(x) \right) \right| \le \frac{h^2}{2} M_2$$

 et

$$\left| f(x-h) - \left(f(x) - hf'(x) \right) \right| \le \frac{h^2}{2} M_2$$

donc en faisant la différence et par inégalité triangulaire :

$$|f(x-h) - f(x+h) + 2hf'(x)| = \left| \left(f(x-h) - \left(f(x) - hf'(x) \right) \right) - \left(f(x+h) - \left(f(x) + hf'(x) \right) \right) \right|$$

$$\leq |f(x-h) - \left(f(x) - hf'(x) \right)| + |f(x+h) - \left(f(x) + hf'(x) \right)| \leq h^2 M_2,$$

d'où à nouveau par inégalité triangulaire

$$|f'(x)| = \left| \left(f'(x) + \frac{f(x-h) - f(x+h)}{2h} \right) - \frac{f(x-h) - f(x+h)}{2h} \right|$$

$$\leq \left| f'(x) + \frac{f(x-h) - f(x+h)}{2h} \right| + \left| \frac{f(x-h) - f(x+h)}{2h} \right| \leq \frac{h}{2} M_2 + \frac{M_0}{h}$$

Notons que cette majoration est valable pour tout h>0: on va donc chercher le meilleur majorant. Celuici est minimal pour $h=\sqrt{\frac{2M_0}{M_2}}$ (étude de $h\mapsto \frac{M_0}{h}+\frac{h}{2}M_2$ comme en terminale...), et y vaut $\sqrt{2M_0M_2}$, d'où le résultat.

Il semble raisonnable d'utiliser l'inégalité de Taylor-Lagrange, mais pour utiliser les informations en a et en b, on va écrire deux inégalités, "vues de $\frac{a+b}{2}$ ":

$$\left| f\left(\frac{a+b}{2}\right) - f(a) \right| \le \frac{(b-a)^2}{8} M_2,$$

et:

$$\left| f(b) - f\left(\frac{a+b}{2}\right) \right| \le \frac{(b-a)^2}{8} M_2$$

(on a noté $M_2 = \sup_I |f''|$). En faisant la somme et en utilisant l'inégalité triangulaire, on obtient :

$$|f(b) - f(a)| \le \left| f\left(\frac{a+b}{2}\right) - f(a) \right| + \left| f(b) - f\left(\frac{a+b}{2}\right) \right| \le \frac{(b-a)^2}{4} M_2.$$

On pourra montrer que les seuls cas d'égalité sont les cas où f est constante. On pourra le voir en remplaçant l'inégalité de Taylor-Lagrange par la formule de Taylor avec reste intégral. Si f n'est pas constante, on a donc $|f(b) - f(a)| < \frac{(b-a)^2}{4} M_2$. Cependant, on peut montrer que la constante $\frac{1}{4}$ est optimale f: on dit que l'inégalité est tendue.

4 Fonctions à valeurs complexes

Exercice 25

On écrit $f = f_1 + if_2$, avec $f_1, f_2 \in \mathcal{D}(I, \mathbb{R})$, et ensuite, puisque $\overline{f} = f_1 - if_2$ et $|f| = \sqrt{f_1^2 + f_2^2}$, on a la dérivabilité de \overline{f} partout, et celle de |f| en tout point où f ne s'annulle pas.

Attention, on ne peut pas affirmer que |f| est non dérivable en les points où f s'annulle : voir $f(x) = ix^2$ puis f(x) = ix...

Exercice 26

On écrit $f(b) - f(a) = \rho e^{i\theta}$ avec $\rho \ge 0$, et on définit $g = e^{-i\theta} f = g_1 + ig_2$; on peut alors écrire :

$$|f(b) - f(a)| = g(b) - g(a) = g_1(b) - g_1(a)$$

 $\leq (b-a)||g_1'||_{\infty} \leq (b-a)||g_1'||_{\infty} = (b-a)||f_1'||_{\infty}.$

Comme d'habitude, $\|\varphi\|_{\infty}$ désigne Sup $|\varphi|$ (qui est réel lorsque φ est continue sur le segment [a,b]).

Exercice 27

La rédaction va être un peu elliptique...

- Nécessairement, $\rho = |f|$. Comme d'après l'exercice 25, cette application possède la régularite de f, le problème sera résolu pour f si on arrive à le résoudre pour $\frac{f}{|f|}$.
- Pour $t \in I$, on peut écrire $f(t) = e^{i\theta(t)}$, avec $\theta(t) \in]-\pi,\pi]$. Mais $\operatorname{Re} f(t) = \cos t \xrightarrow[t \to t_0]{} \operatorname{Re} f(t_0) > -1$, donc $\cos \theta(t) > -1$ pour t proche de t_0 . On a alors pour de tels $t : \frac{\theta(t)}{2} \in]-\pi/2,\pi/2[$, avec (formules trigo ou (mieux) dessin avec l'angle au centre) :

$$\tan \frac{\theta(t)}{2} = \frac{\sin \theta(t)}{1 + \cos \theta(t)} = \frac{\operatorname{Im} f(t)}{1 + \operatorname{Re} f(t)}$$

de sorte que $\theta(t) = 2 \arctan \frac{\operatorname{Im} f(t)}{1 + \operatorname{Re} f(t)}$

 $^{^{1}}$ si $K<\frac{1}{4},$ on construit f telle que $|f(b)-f(a)|>K(b-a)^{2}M_{2}$

- Si $f(t_0) = -1$, le travail précédent appliqué à -f fournit α_2 de classe \mathcal{C}^k au voisinage de t_0 telle que $-f(t) = \mathrm{e}^{i\alpha_2(t)}$, de sorte que : $f(t) = \mathrm{e}^{i\alpha_2(t)+\pi}$.
- Supposons α_1 et α_2 définis sur $J =]t_0 \eta, t_0 + \eta[$, et posons $\alpha: t \in J \mapsto \alpha_2(t) \alpha_1(t) : e^{\alpha}(t) = 1$ pour tout $t \in J$, donc $\alpha(t) = 2k(t)\pi$, avec $k \in \mathbb{Z}$ ET α CONTINUE. $t \mapsto k(t)$ est donc une application continue, à valeurs dans \mathbb{Z} , et définie sur un intervalle : elle est donc constante (sinon, le TVI nous fournirait un t tel que k(t) ne soit pas entier).
- 1. L'existence d'UN relèvement local (questions précédentes) nous assure que X est non vide, et même qu'il contient en réel < 0.
 - 2. Imaginons $x_0 < -1$: il existe un relèvement local α_1 défini sur un voisinage de x_0 de la forme $]x_0 \eta, x_0 + \eta[$. Puisque x_0 est la borne inférieure de X, il existe un relèvement α_2 défini sur $[x_0 + \eta/2, 0]$. Maizalors, α_1 et α_2 sont deux relèvements définis sur l'intervalle commun $[x_0 + \eta/2, x_0 + \eta[$, donc sont égaux à une constante $2k\pi$ près pour un certain $k \in \mathbb{Z}$.

Si on considère maintenant l'application $\alpha: [x_0 - \eta/2, 0]$ définie par $\alpha(t) = \begin{cases} \alpha_1(t) - 2k\pi & \text{si } t \in [x_0 - \eta/2, x_0 + \alpha_2(t)] \\ \alpha_2(t) & \text{sinon} \end{cases}$ on obtient un relèvement \mathcal{C}^k (pourquoi?) sur $[x_0 - \eta/2, 0]$, contredisant la définition de x_0 . Maintenant, $x_0 = -1$, et si on recolle de la même façon un relèvement local autour de -1 et un relèvement sur $[-1 + \eta/2, 0]$, on obtient un relèvement sur [-1, 0].

- 3. Pour tout $n \in \mathbb{N}^*$, il existe un relèvement sur [0, 1 1/n] valant α_0 en 0, et on sait même que si n < m, alors f_n est une restriction de f_m (pourquoi?). On peut donc définir un relèvement α sur [0,1], en définissant $\alpha(x)$ comme la valeur commune des $f_n(x)$, pour les n tels que $x \ge 1 1/n$. Le caractère \mathcal{C}^k de ce relèvement viendra du caractère local de la dérivabilité, et de la coïncidence locale avec les f_n , elles-même de classe \mathcal{C}^k .
- 4. On recolle un relèvement sur [-1/3, 1] et un relèvement sur [-1, 1/3].
- Comme dans le cas du relèvement local, on montre que deux relèvements continus diffèrent nécessairement d'une constante de la forme $2k\pi$ ($k \in \mathbb{Z}$). Plus précisément, si α est UN relèvement, alors LES relèvements sont les applications $\alpha + 2k\pi$, pour $k \in \mathbb{Z}$.

5 Quizz - continuité et dérivabilité

Exercice 28

1. **OUI**: supposons f croissante (par exemple...). Si a < b, on choisit $n \in \mathbb{N}$ tel que $a + nT \ge b$, et on obtient:

$$f(a) \le f(b) \le f(a + nT) = f(a),$$

de sorte que les inégalités sont en fait toutes des égalités, et le résultat suit.

- 2. **NON**: prendre $f: x \mapsto -x + 2\sin x$.
- 3. **NON** : on peut chercher la tête d'un contre-exemple, en écrivant, dans le cas dérivable (a posteriori, notre exemple ne sera d'ailleurs pas dérivable!) :

$$(fg)' = f'g + fg',$$

de sorte qu'il suffit d'avoir f et g strictement négatives, avec A CERTAINS ENDROITS f'>0 et g'=0, et A D'AUTRES ENDROITS f'=0 et g'<0. En fait, le contre-exemple qui suit va simplement prendre des fonctions affines par morceaux ayant les variations suggérées par le calcul formel précédent. On définit donc (APRES AVOIR FAIT UN DESSIN) f et g affines sur chaque intervalle [k,k+1], avec les valeurs suivantes :

$$f(2k) = -\frac{1}{1+2k}, \qquad f(2k+1) = -\frac{1}{3+2k},$$

et:

$$g(2k) = g(2k+1) = -2 + \frac{1}{2k+1}$$

- 4. **NON** : prendre pour f une fonction très méchante discontinue en x_0 , et g = -f.
- 5. OUI : il suffit d'écrire dans le cas croissant :

$$\forall x \in [0,1], \qquad f(0) \le f(x) \le f(1).$$

- 6. **NON** : prendre la fonction indicatrice de \mathbb{Q} , qui vaut 1 sur les rationnels, et 0 ailleurs. Cette fonction vérifie les hypothèses de l'énoncé, mais pas la conclusion.
- 7. **NON** : $f = \arctan \ \text{et} \ I = [0, +\infty[$.
- 8. **NON**: $f = \sin \text{ et } I =]-1789, 1515[$.
- 9. **NON** : $f(x) = \frac{1}{x} \text{ sur } I =]0, 1].$
- 10. **NON**:

$$\frac{\sqrt{x+\sqrt{x}}}{\sqrt{2x}} = \frac{\sqrt{1+1/\sqrt{x}}}{\sqrt{2}} \underset{x \to +\infty}{\longrightarrow} \frac{1}{\sqrt{2}} \neq 0.$$

- 11. **NON**: prendre pour f n'importe quoi, et g = f!!!
- 12. **NON**: on choisit f(t) proche de 2t, auquel on ajoute quelque chose de petit mais qui oscille beaucoup: par exemple

$$f(t) = \begin{cases} 0 & \text{si } t = 0\\ 2t + t^2 \cos \frac{1}{t^2} & \text{si } t > 0 \end{cases}$$

- 13. **OUI**: la relation $\frac{f(t)}{t} > 1$ fournit, en faisant tendre t vers $1^+: f'(0) \ge 1$, puis par **continuité de** f' **en** 0 (f est \mathcal{C}^1): $f'(t) \ge 1/2$ pour tout $t \in [0, \alpha]$ pour un certain $\alpha > 0$, et f est strictement croissante sur $[0, \alpha]$.
- 14. **NON** : $f(x) = x \sin x$.
- 15. **NON**: si f(x) = x et g(x) = -x, alors Sup(f(x), g(x)) = |x|...
- 16. **NON** : $f(x) = (x 1/2)^3$.
- 17. **OUI**: $x \mapsto x \text{ sur } [0,1[, \text{ ou bien } x \mapsto \frac{-1}{1+x^2} \text{ sur } \mathbb{R}...$
- 18. **NON**: $x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ x^2 \cos \frac{1}{x^2} & \text{si } x > 0 \end{cases}$
- 19. **OUI**: TAF sur [a, a + h], puis faire tendre h vers 0.
- 20. **OUI** : voir la question précédente! (en fait, d'après la question précédente, si $\lim_{x\to a^+} f'(x)$ existe, elle est nécessairement réelle...)
- 21. **NON**:
 - > taylor(sin(x), x=Pi/6, 3);

$$\sin x = \frac{1}{2} + \frac{\sqrt{3}}{2}(x - \pi/6) - \frac{1}{4}(x - \pi/6)^2 + O((x - \pi/6)^3).$$

22. OUI: bien sûr que oui!